当前所在位置:珠峰网资料 >> 建筑 >> 造价工程师 >> 正文
2015年造价工程师考试(土建)知识点精选(5)
发布时间:2011/9/9 9:30:03 来源:城市学习网 编辑:ziteng

  地质构造

  地质构造是构造变动在岩层和岩体中遗留下来的各种构造形迹。由于地壳中存在很大的压力,组成地壳的上部岩层,在地应力的长期作用下就会发生变形,形成构造变动的形迹,如在野外经常见到的岩层褶曲和断层等。地质构造的规模,有大有小,大的如构造带,可以纵横数千公里,小的则如岩石的片理等。

  一、水平构造和单斜构造

  水平构造是指未经构造变动的沉积岩层,形成时的原始产状是水平的,先沉积的老岩层在下,后沉积的新岩层在上。单斜构造是指原来水平的岩层,在受到地壳运动的影响后产状发生变动,岩层向同一个方向倾斜。

  一般将岩层在空间中的位置定义为岩层产状。倾斜岩层的产状,是用岩层层面的走向、倾向和倾角三个产状要素(如图1.3.1所示)来表示的。一般而言,通过岩层产状的三个要素,可以表达出经过构造后的构造形态在空间的位置。

  (1)岩层走向,是指岩层层面与水平面交线的方位角,表示岩层在空间延伸的方向。

  (2)岩层的倾向,是垂直走向顺倾斜面引出的一条直线与水平面投影的方位角,表示岩层在空间的倾斜方向。

  (3)岩层的倾角,是岩层层面与水平面所夹的锐角,表示岩层在空间倾斜角度的大小。

  后面的褶曲的轴面、裂隙面和断层面等的产状意义和表达形式与岩层的相同。

  二、褶皱构造

  褶皱构造是组成地壳的岩层受构造力的强烈作用,使岩层形成一系列波状弯曲而未丧失其连续性的构造,它是岩层产牛的塑性变形。绝大多数褶皱是在水平挤压力作用下形成的,但也有少数是在垂直力或力偶作用下形成的。褶皱在层状岩层中最明显,在块状岩体中则很难见到。

  褶曲是褶皱构造中的一个弯曲,两个或两个以上褶曲构造的组合构成褶皱构造,每一个褶曲都有核部、翼、轴面、轴及枢纽等几个要素。褶曲的基本形态是背斜和向斜,如图1.3.2所示。背斜褶曲是岩层向上拱起的弯曲,以褶曲轴为中心向两翼倾斜。当地面受到剥蚀而露出不同地质年代的岩层时,较老的岩层出现在褶曲的轴部,从轴部向两翼,依次出现的是较新的岩层。向斜褶曲,是岩层向下凹的弯曲,其岩层的倾向与背斜相反,两翼的岩层都向褶曲的轴部倾斜。当地面遭受剥蚀,在褶曲轴部露出的是较新的岩层,向两翼依次露出的是较老的岩层。

  在褶皱比较强烈的地区。一般都是线形的背斜与向斜相间排列,以大体一致的走向平行延伸,有规律的组成不同形式的褶皱构造。工程在褶曲的翼部遇到的基本上是单斜构造,一般没有特殊不良的影响,但对于以下两种情况,则需要根据具体情况进行分析:

  (1)对于深路堑和高边坡来说,当路线垂直岩层走向或路线与岩层走向平行但岩层倾向与边坡倾向相反时,对路基边坡的稳定性是有利的。不利的情况是路线走向与岩层的走向平行,边坡与岩层的倾向一致,尤其是边坡的倾角大于岩层的倾角最为不利。

  (2)对于隧道工程来说,在褶曲构造的轴部,岩层倾向发生显著变化,应力作用最集中,容易遇到工程地质问题。例如,由于岩层破碎而产生的岩体稳定问题和向斜轴部地下水的问题。一般选线从褶曲的翼部通过是比较有利的。 [NextPage]

  三、断裂构造

  断裂构造是构成地壳的岩体受力作用发生变形,当变形达到一定程度后,使岩体的连续性和完整性遭到破坏,产生各种大小不一的断裂。它是地壳上层常见的地质构造,其分布很广,特别在一些断裂构造发育的地带,常成群分布,形成断裂带。根据岩体断裂后两侧岩块相对位移的情况,将其分为裂隙和断层两类。

  1.裂隙

  裂隙,也称为节理,是存在于岩体封号的裂缝,是岩体受力断裂后两侧岩块没有显著位移的小型断裂构造。一般用裂隙率(岩石中裂隙的面积与岩石总面积的百分比)表示,裂隙率越大,表示岩石中的裂隙越发育。根据裂隙的成因,将其分为构造裂隙和非构造裂隙两类。

  (1)构造裂隙。构造裂隙是岩体受地应力作用随岩体变形而产生的裂隙。由于构造裂隙在成因上与相关构造(如褶曲、断层等)和应力作用的方向及性质有密切联系,所以它在空间分布上具有一定的规律性。按裂隙的力学性质,可将构造裂隙分为张性裂隙和扭(剪)性裂隙。张性裂隙主要发育在背斜和向斜的轴部,裂隙张开较宽,断裂面粗糙,一般很少有擦痕,裂隙间距较大且分布不匀,沿走向和倾向都延伸不远;扭(剪)性裂隙,一般多是平直闭合的裂隙,分布较密、走向稳定,延伸较深、较远,裂隙面光滑,常有擦痕,一般出现在褶曲的翼部和断层附近。扭性裂隙常沿剪切面成群平行分布,形成扭裂带,将岩体切割成板状。有时两组裂隙在不同的方向上同时出现,交叉成“X”形,将岩体切割成菱形块体。

  (2)非构造裂隙。非构造裂隙是由成岩作用、外动力、重力等非构造因素形成的裂隙。如岩石在形成过程中产生的原生裂隙、风化裂隙以及沿沟壁岸坡发育的卸荷裂隙等。其中具有普遍意义的是风化裂隙,其主要发育在岩体靠近地面的部分,一般很少达到地面下10~15m的深度。裂隙分布零乱,没有规律性,使岩石多成碎块,沿裂隙面岩石的结构和矿物成分也有明显变化。

  岩体中的裂隙,在丁程上除有利于开挖外,对岩体的强度和稳定性均有不利的影响。其破坏了岩体的整体性,促进了岩体的风化速度,增强了岩体的透水性,进而使岩体的强度和稳定性降低。当裂隙主要发育方向与路线走向平行,倾向与边坡一致时,不论岩体的产状如何,路堑边坡都容易发生崩塌等不稳定现象。在路基施工中,如果岩体存在裂隙,还会影响爆破作业的效果。因而,当裂隙有可能成为影响工程设计的重要因素时,应当对裂隙进行深入的调查研究,详细论证裂隙对工程建设的影响。

  2.断层

  断层是岩体受力作用断裂后,两侧岩块沿断裂面发生显著相对位移的断裂构造。

  (1)断层要素。断层一般由四个部分组成。

  ①断层面和破碎带。断层面是指两侧岩块发生相对位移的断裂面,可以是直立的,也可以是倾斜的,一般情况下为倾斜状态,其产状可以通过断层面的走向、倾向和倾角来表示。规模大的断层,一般不是沿着一个简单的面发生,而往往是沿着一个错动带发生,称之为断层破碎带。断层的规模越大,破碎带也就越宽,越复杂。

  ②断层线。是断层面与地面的交线,表示断层的延伸方向,其形状决定于断层面的形状和地面的起伏情况。

  ③断盘。是断层面两侧相对位移的岩体。当断层面倾斜时,位于断层面上部的称为上盘,位于断层面下部的称为下盘。若断层面直立则无上下盘之分。

  ④断距。是断层两盘相对错开的距离。岩层原来相连的两点,沿断层面错开的距离称为总断距,其水平分量称为水平断距,垂直分量称为垂直断距。

  (2)断层基本类型。根据断层两盘相对位移的情况,可分为正断层、逆断层、平推断层。

  ①正断层。是上盘沿断层面相对下降,下盘相对上升的断层。它一般是受水平张应力或垂直作用力使上盘相对向下滑动而形成的,所以构造变动中多在垂直于张应力的方向上发生,但也有沿已有的剪节理发生的。其断距可从几厘米到数十米,延伸范围一般自几十米至数公里。倾角一般较陡,多在50°~60°,甚至更陡。如由数条正断层排列组合在一起,则形成阶地式断层、地垒和地堑等。

  ②逆断层。是上盘沿断层面相对上升,下盘相对下降的断层。它一般是由于岩体受到水平方向强烈挤压力的作用,使上盘沿断面向上错动而成。断层线的方向常和岩层走向或褶皱轴的方向近于一致,和压应力作用的方向垂直。断层面从陡倾角至缓倾角都有。根据断层面的倾角大小,可将逆断层分为三种类型:冲断层,其断层面倾角大于45°;逆掩断层,其断层面倾角介于25°~45°之间;辗掩断层,其断层面倾角小于25°。

  ③平推断层。是由于岩体受水平扭应力作用,使两盘沿断层面发生相对水平位移的断层。由于多系受剪(扭)应力形成,因此大多数与褶皱轴斜交,与“X”节理平行或沿该节理形成,其倾角一般是近于直立的。这种断层的破碎带一般较窄,沿断层面常有近水平的擦痕。

  断层的形成和分布不是孤立的现象,它受着区域性或地区性地应力场的控制,并经常与相关构造伴生,很少孤立出现。各构造之间总是依一定的力学性质,以一定的排列方式有规律地组合在一起,形成不同形式的断层带。如阶状断层、地堑、地垒和叠瓦式构造等,就是分布比较广泛的几种断层的组合形式。

  (3)断层对工程建设的影响。由于岩层发生强烈的断裂变动,致使岩体裂隙增多。岩石破碎、风化严重、地下水发育,从而降低了岩石的强度和稳定性,对工程建筑造成种种不利的影响。

  ①公路工程路线布局,应尽量避开大的断层破碎带。特别在安排河谷路线时,要注意河谷地貌与断层构造的关系。当路线与断层走向平行,路基靠近断层破碎带时,开挖路基容易引起边坡发生大规模坍塌,直接影响施工和公路的正常使用。在进行大桥桥位勘测时,要注意查明桥基部分有无断层存在,及其影响程度如何,以便根据不同的情况,在设计基础工程时采取相应的处理措施。

  ②在断层发育地带修建隧道,由于岩层的整体性遭到破坏,加之地面水或地下水的侵入,其强度和稳定性都很差,容易产生洞顶塌落,影响施工安全。因此,当隧道轴线与断层走向平行时,应尽量避免与断层破碎带接触。隧道横穿断层时,虽然只是个别段落受断层影响,但因地质及水文地质条件不良,必须预先考虑措施,保证施工安全。特别当岩层破碎带规模很大,或者穿越断层带时,会使施工十分困难,在确定隧道平面布置时间,应尽量设法避开。 [NextPage]

  四、地震的震级和烈度

  地震是一种地质现象,主要是由于地球的内力作用而产生的一种地壳振动现象;其中绝大多数伴随岩层断裂错动产生。火山爆发、洞穴陷落、山崩等也可引起地震,但其所占比例很小,且强度低、影响范围小。此外,也有由人类活动导致断层错动而产生的诱发地震,如水库诱发地震等。日前,世界上有两个地震活动频繁的地震带,即阿尔卑斯一喜马。拉雅地震带和环太平洋地震带。前者约占地震总数的15%,后者约占80%,这两个地震带都延伸到我国境内,所以我国是个多地震的国家,尤其西南、西北、华北、东南沿海及台湾等地区,强烈地震经常发生。

  1.地震震源

  震源是深部岩石破裂产生地壳震动的发源地。震源在地面上的垂直投影称为震中。地震所引起的震动以弹性波的形式向各个方向传播,其强度随距离的增加而减小。地震波首先传达到震中,震中区受破坏最大,距震中越远破坏程度越小。地面上受震动破坏程度相同点的外包线称为等震线。地震波通过地球内部介质传播的称为体波。体波分为纵波和横波,纵波的质点振动方向与震波传播方向一致,周期短、振幅小、传播速度快;横波的质点振动方向与震波传播方向垂直,周期长、振幅大、传播速度较慢。体波经过反射、折射而沿地面附近传播的波称为面波,面波的传播速度最慢。

  2.地震震级

  地震是依据所释放出来的能量多少来划分震级的。释放出来的能量越多,震级就越大。中国科学院将地震震级分为五级:微震、轻震、强震、烈震和大灾震。目前国际通用的李希特-古登堡震级是以距震中100km的标准地震仪所记录的最大振幅的um的对数表示。如记录的最大振幅是10mm,即10000um,取其对数等于4,则为4级地震。

  3.地震烈度

  地震烈度,是指某一地区的地面和建筑物遭受一次地震破坏的程度。其不仅与震级有关,还和震源深度,距震中距离以及地震波通过介质条件(岩石性质、地质构造、地下水埋深)等多种因素有关。我国已制定山地震烈度表,可供工程建设参考。

  地震烈度又可分为基本烈度、建筑场地烈度和设汁烈度。基本烈度代表一个地区的最大地震烈度。建筑场地烈度也称小区域烈度,是建筑场地内因地质条件、地貌地形条件和水文地质条件的不同而引起的相对基本烈度有所降低或提高的烈度。一般降低或提高半度至一度;设计烈度是抗震设计所采用的烈度,是根据建筑物的重要性、永久性、抗震性以及工程的经济性等条件对基本烈度的调整。设计烈度一般可采用国家批准的基本烈度,但遇不良地质条件或有特殊重要意义的建筑物,经主管部门批准,可对基本烈度加以调整作为设计烈度。在工程建筑设计中,明确建筑区域的地震烈度是很重要的,一个工程从建筑场地的选择到工程建筑的抗震措施等都与地震烈度有密切的关系。

  4.震级与烈度的关系

  震级与地震烈度既有区别,又相互联系(如表1.3.1所列)。一般情况下,震级越高、震源越浅,距震中越近,地震烈度就越高。一次地震只有一个震级,但震中周围地区的破坏程度,随距震中距离的加大而逐渐减小,形成多个不同的地震烈度区,它们由大到小依次分布。但因地质条件的差异,也可能出现偏大或偏小的烈度异常区。

广告合作:400-664-0084 全国热线:400-664-0084
Copyright 2010 - 2017 www.my8848.com 珠峰网 粤ICP备15066211号
珠峰网 版权所有 All Rights Reserved